Abstract

The real-time, noninvasive, nonionizing, high spatiotemporal resolution, and flexibility characteristics of molecular fluorescence imaging provide a uniquely powerful approach to imaging and monitoring the physiology and pathophysiology of ischemic stroke. Currently, various fluorescence probes have been synthesized with the aim of improving quantitative and quantitative studies of the pathologic processes of ischemic stroke in living animals. In this review, we present an overview of current activatable fluorescence probes for the imaging and diagnosis of ischemic stroke in animal models. We categorize the probes based on their activatable signals from the biomarkers associated with ischemic stroke, and we present representative examples of their functional mechanisms. Finally, we briefly discuss future perspectives in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call