Abstract

Photothermal therapy (PTT) is an emerging treatment modality that is under intensive preclinical investigations for the treatment of various medical conditions, including cancer. However, the lack of targeting function of PTT agents hampers its clinical application. An effective and nontoxic delivery vehicle that can carry PTT agents into tumor areas is still needed urgently. In this study, we developed a multifunctional nanocomposite by loading copper sulfide (CuS) into Cy5.5-conjugated hyaluronic acid nanoparticles (HANP), obtaining an activatable Cy5.5-HANP/CuS (HANPC) nanocomposite. In this system, Cy5.5 fluorescent signal is quenched by CuS inside the particle until the whole nanocomposite is degraded by hyaluronidase present in tumor, giving strong fluorescence signals delineating the tumor. Importantly, CuS with strong NIR absorbance appears to be an excellent contrast agent for photoacoustic (PA) imaging and an effective PTT agent. After intravenous administration of HANPC into SCC7 tumor-bearing mice, high fluorescence and PA signals were observed in the tumor area over time, which peaked at the 6 h time point (tumor-to-normal tissue ratio of 3.25±0.25 for optical imaging and 3.8±0.42 for PA imaging). The tumors were then irradiated with a laser, and a good tumor inhibition rate (89.74% on day 5) was observed. Our studies further encourage application of this HA-based multifunctional nanocomposite for image-guided PTT in biomedical applications, especially in cancer theranostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.