Abstract

Photodynamic therapy (PDT) necessitates approaches capable of increasing antitumor effects while decreasing nonspecific photodamage. We herein report an activatable probe (Glu-PyEB) comprising two distinct photosensitizers with mutually suppressed photodynamics. Activation by tumor-associated γ-glutamyltranspeptidase gives rise to a generator of superoxide radical (O2-•) accumulated in lysosomes and a producer of singlet oxygen (1O2) enriched in mitochondria. This enables light-irradiation-triggered damage of lysosomes and mitochondria, robust cell death, and tumor retardation in vivo, showing the use of paired photosensitizers subjected to reciprocally suppressed photodynamics for activatable PDT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.