Abstract
In ewes, the uterine gland knockout (UGKO) phenotype is caused by neonatal exposure to norgestomet to arrest uterine gland development and produce an adult which has a uterus characterized by the lack of endometrial glands. Since endometrial glands in the sheep produce the lymphocyte-inhibitory protein, ovine uterine serpin (OvUS), an experiment was conducted with ewes of the UGKO phenotype to evaluate whether the inhibitory actions of progesterone on tissue rejection responses in utero are dependent upon the presence of endometrial glands. Control and UGKO ewes were ovariectomized and subsequently treated with either 100 mg/day progesterone or corn oil vehicle for 30 days. An autograft and allograft of skin were then placed in each uterine lumen and treatments were continued for an additional 30 days before grafts were examined for survival. All autografts survived and had a healthy appearance after histological analysis. Allografts were generally rejected in ewes treated with vehicle but were present for hormone-treated ewes, regardless of uterine phenotype. Analysis of the histoarchitecture and protein synthetic capacity of the uterus revealed that progesterone induced differentiation of endometrial glands and synthesis and secretion of OvUS in UGKO ewes. The UGKO ewes had reduced density of CD45R+ lymphocytes in the endometrial epithelium and there was a tendency for progesterone to reduce this effect in luminal epithelium. Taken together, results confirm the actions of progesterone to inhibit graft rejection response in utero. Responses of UGKO ewes to progesterone indicate that the hormone can induce de novo development and differentiation of endometrial glands, at least when skin grafts are in the uterus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.