Abstract
ABSTRACTWe show that if A is a finite-dimensional associative H-module algebra for an arbitrary Hopf algebra H, then the proof of the analog of Amitsur’s conjecture for H-codimensions of A can be reduced to the case when A is H-simple. (Here we do not require that the Jacobson radical of A is an H-submodule.) As an application, we prove that if A is a finite-dimensional associative H-module algebra where H is a Hopf algebra H over a field of characteristic 0 such that H is constructed by an iterated Ore extension of a finite-dimensional semisimple Hopf algebra by skew-primitive elements (e.g., H is a Taft algebra), then there exists integer PIexpH(A). In order to prove this, we study the structure of algebras simple with respect to an action of an Ore extension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.