Abstract
Although intrathecal administration of midazolam, a water-soluble imidazobenzodiazepine derivative, has been found to produce analgesia, how it exerts this effect at the neuronal level in the spinal cord is not fully understood. The effects of midazolam on electrically evoked and spontaneous excitatory transmission were examined in lamina II neurons of adult rat spinal cord slices using the whole cell patch clamp technique. Bath-applied midazolam (1 microm) diminished Adelta- and C-fiber evoked polysynaptic excitatory postsynaptic currents in both amplitude and integrated area. However, it affected neither Adelta- and C-fiber evoked monosynaptic excitatory postsynaptic currents in amplitude nor miniature excitatory postsynaptic currents in amplitude, frequency, and decay time constant. In the presence of a benzodiazepine receptor antagonist, flumazenil (5 microm), midazolam (1 microm) did not diminish Adelta-fiber evoked polysynaptic excitatory postsynaptic currents, suggesting that midazolam modulate the gamma-aminobutyric acid interneurons in the dorsal horn. Midazolam reduced excitatory synaptic transmission by acting on the gamma-aminobutyric acid type A/benzodiazepine receptor in interneurons, leading to a decrease in the excitability of spinal dorsal horn neurons. This may be a possible mechanism for the antinociception by midazolam in the spinal cord.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.