Abstract

1. K+ currents activated by volatile general anaesthetics (IK(An)) and by the neuropeptide FMRFamide (IK(FMRFa)) were studied under voltage clamp in isolated identified neurones from the pond snail Lymnaea stagnalis. 2. IK(An) was activated by all the volatile anaesthetics studied. The maximal responses varied from agent to agent, with halothane sevoflurane > isoflurane > enflurane approximately chloroform. 3. IK(An) was inhibited rather than activated by the n-alcohols from hexanol to dodecanol and by the 6- and 8-carbon cycloalcohols. The n-alcohols exhibited a cutoff effect, with dodecanol being unable to half-inhibit IK(An). 4. Unlike IK(An) which did not desensitize at reasonable halothane concentrations, IK(FMRFa) desensitized at most FMRFamide concentrations studied. This desensitization could be substantially removed by halothane. Nonetheless, both IK(An) and IK(FMRFa) had similar sensitivities to the potassium channel blockers tetraethylammonium and 4-aminopyridine, consistent with both currents flowing through the same channels. Responses to low concentrations of halothane and FMRFamide showed synergy. 5. The phospholipase A2 inhibitor aristolochic acid inhibited IK(An), consistent with a role for arachidonic acid (AA). The lipoxygenase and cyclooxygenase inhibitor nordihydroguaiaretic acid blocked IK(FMRFa) but did not affect IK(An). IK(An) and IK(FMRFa) were little affected by the cyclooxygenase inhibitor indomethacin. These findings suggest that neither lipoxygenase nor cyclooxygenase pathways of AA metabolism are involved in the anaesthetic activation of IK(An. 6. Inhibitors of a third, cytochrome P450-mediated, pathway of AA metabolism (clotrimazole and econazole) potently blocked IK(An), suggesting possible roles for certain cytochrome P450 isoforms in the activation of IK(An).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.