Abstract
L-Glutamate, N-methyl-D-aspartic acid (NMDA), quisqualate, and kainate were found to increase endogenous somatostatin release from primary cultures of rat cortical neurons in a dose-dependent manner. The rank order of potency calculated from the dose-response curves was quisqualate greater than glutamate = NMDA greater than kainate, with EC50 values of 0.4, 20, and 40 microM, respectively. Alanine, glutamine, and glycine did not modify the release of somatostatin. The stimulation of somatostatin release elicited by L-glutamate was Ca2+ dependent, was decreased by Mg2+, and was blocked by DL-amino-5-phosphonovaleric acid (APV) and thienylphencyclidine (TCP), two specific antagonists of NMDA receptors. The NMDA stimulatory effect was strongly inhibited by APV in a competitive manner (IC50 = 50 microM) and by TCP in a noncompetitive manner (IC50 = 90 nM). The release of somatostatin induced by the excitatory amino acid agonists was not blocked by tetrodotoxin (1 microM), a result suggesting that tetrodotoxin-sensitive, sodium-dependent action potentials are not involved in the effect. Somatostatin release in response to NMDA was potentiated by glycine, but the inhibitory strychnine-sensitive glycine receptor did not appear to be involved. Our data suggest that glutamate exerts its stimulatory action on somatostatin release essentially through an NMDA receptor subtype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.