Abstract

Although much is known about the actions of cholera toxin on intestinal and extra-gastrointestinal tissues, almost nothing is known about the interaction of this toxin with cells in the stomach. In the present study, we prepared 125I-labeled cholera toxin (1900 Ci/mmol) and examined the binding of this radioligand to dispersed Chief cells from guinea pig stomach. Moreover, we examined the actions of cholera toxin on cellular cAMP and pepsinogen secretion from Chief cells. Binding of 125I-labeled cholera toxin could be detected within 5 min, was maximal by 60 min, and was increased by increasing the radioligand or cell concentrations. Inhibition of binding by unlabeled toxin indicated a dissociation constant of 3 nM and 8.7·10 5 cholera toxin receptors per Chief cell. In contrast to the rapidity of binding, a cholera toxin-induced increase in cAMP and pepsinogen secretion was not detected until 30–45 min of incubation. A 3 to 6-fold increase in cAMP and pepsinogen secretion was observed with maximal concentrations of cholera toxin. Binding of 125I-labeled cholera toxin and the toxin's actions on cAMP and pepsinogen secretion were inhibited by the B subunit of the toxin. Binding was not altered by other agents that have been shown to stimulate pepsinogen secretion (carbachol, CCK-8, secretin, vasoactive intestinal peptide, prostaglandin E 1, or forskolin). These data indicate that Chief cells from guinea pig stomach possess a specific class of cholera toxin receptors. Binding of cholera toxin to these receptors causes an increase in cellular cAMP that stimulates pepsinogen secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.