Abstract
Let G be a real reductive Lie group, K its compact subgroup. Let A be the algebra of G-invariant real-analytic functions on T*(G/K) (with respect to the Poisson bracket) and let C be the center of A. Denote by 2ε(G,K) the maximal number of functionally independent functions from A\C. We prove that ε(G,K) is equal to the codimension δ(G,K) of maximal dimension orbits of the Borel subgroup B⊂G. Moreover, if δ(G,K)=1, then all G-invariant Hamiltonian systems on T*(G/K) are integrable in the class of the integrals generated by the symmetry group G. We also discuss related questions in the geometry of the Borel group action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.