Abstract

Although the intrathecal administration of JM-1232(−) reportedly produces antinociception, this action has not yet been examined at the cellular level. We examined the action of JM-1232(−) on synaptic transmission in spinal substantia gelatinosa (SG) neurons which play an important role in regulating nociceptive transmission from the periphery. The whole-cell patch-clamp technique was applied to the SG neurons of adult rat spinal cord slices. Bath-applied JM-1232(−) prolonged the decay phase of GABAA-receptor mediated spontaneous inhibitory postsynaptic current (sIPSC) and increased its frequency without a change in amplitude. The former but not latter action was sensitive to a benzodiazepine-receptor antagonist flumazenil. JM-1232(−) also increased glycinergic sIPSC frequency with no change in amplitude and decay phase. On the other hand, glutamatergic spontaneous excitatory transmission was unaffected by JM-1232(−). These results indicate that JM-1232(−) enhances inhibitory transmission by (1) prolonging the decay phase of GABAergic sIPSC through benzodiazepine-receptor activation and by (2) increasing the spontaneous release of GABA and glycine from nerve terminals without its activation. This enhancement could contribute to at least a part of the antinociceptive effect of intrathecally-administered JM-1232(−).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.