Abstract
The problem of constructing models described by duality-invariant actions has a rather long history. It goes back to time when Poincaré and later on Dirac noticed electric-magnetic duality symmetry of the free Maxwell equations, and, Dirac (1931) assumed the existence of magnetically charged particles (monopoles and dyons) admitting the duality symmetry to be also held for the Maxwell equations in the presence of charged sources. To describe monopoles and dyons on an equal footing with electrically charged particles one should have a duality-symmetric form of the Maxwell action. In 1971 Zwanziger constructed such an action. An alternative duality- symmetric Maxwell action was proposed by Deser and Teitelboim in 1976. The two actions, which proved to be dual to each other by Maznytsia et. al. (1998), are not manifestly Lorentz-invariant. This feature turned out to be a general one. Duality and space-time symmetries hardly coexist in one and the same action.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.