Abstract

We present a novel computational approach for predicting human pharmacokinetics (PK) that addresses the challenges of early stage drug design. Our study introduces and describes a large-scale data set of 11 clinical PK end points, encompassing over 2700 unique chemical structures to train machine learning models. To that end multiple advanced training strategies are compared, including the integration of in vitro data and a novel self-supervised pretraining task. In addition to the predictions, our final model provides meaningful epistemic uncertainties for every data point. This allows us to successfully identify regions of exceptional predictive performance, with an absolute average fold error (AAFE/geometric mean fold error) of less than 2.5 across multiple end points. Together, these advancements represent a significant leap toward actionable PK predictions, which can be utilized early on in the drug design process to expedite development and reduce reliance on nonclinical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.