Abstract

The N1 auditory ERP and its magnetic counterpart (N1[m]) are suppressed when elicited by self-induced sounds. Because the N1(m) is a correlate of auditory event detection, this N1 suppression effect is generally interpreted as a reflection of the workings of an internal forward model: The forward model captures the contingency (causal relationship) between the action and the sound, and this is used to cancel the predictable sensory reafference when the action is initiated. In this study, we demonstrated in three experiments using a novel coincidence paradigm that actual contingency between actions and sounds is not a necessary condition for N1 suppression. Participants performed time interval production tasks: They pressed a key to set the boundaries of time intervals. Concurrently, but independently of keypresses, a sequence of pure tones with random onset-to-onset intervals was presented. Tones coinciding with keypresses elicited suppressed N1(m) and P2(m), suggesting that action-stimulus contiguity (temporal proximity) is sufficient to suppress sensory processing related to the detection of auditory events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.