Abstract

As a foundation for action selection and task-sequencing intelligence, the reactive and deliberative subsystems of a hybrid agent can be unified by a single, shared representation of intention. In this paper, we summarize a framework for hybrid dynamical cognitive agents ( HDCAs) that incorporates a representation of dynamical intention into both reactive and deliberative structures of a hybrid dynamical system model, and we present methods for learning in these intention-guided agents. The HDCA framework is based on ideas from spreading activation models and belief–desire–intention ( BDI) models. Intentions and other cognitive elements are represented as interconnected, continuously varying quantities, employed by both reactive and deliberative processes. HDCA learning methods—such as Hebbian strengthening of links between co-active elements, and belief–intention learning of task-specific relationships—modify interconnections among cognitive elements, extending the benefits of reactive intelligence by enhancing high-level task sequencing without additional reliance on or modification of deliberation. We also present demonstrations of simulated robots that learned geographic and domain-specific task relationships in an office environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.