Abstract

Dimensionality reduction is the problem of finding a low-dimensional representation of high-dimensional input data. This paper examines the case where additional information is known about the data. In particular, we assume the data are given in a sequence with action labels associated with adjacent data points, such as might come from a mobile robot. The goal is a variation on dimensionality reduction, where the output should be a representation of the input data that is both low-dimensional and respects the actions (i.e., actions correspond to simple transformations in the output representation). We show how this variation can be solved with a semidefinite program. We evaluate the technique in a synthetic, robot-inspired domain, demonstrating qualitatively superior representations and quantitative improvements on a data prediction task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.