Abstract
We introduce the concept of dynamic image, a novel compact representation of videos useful for video analysis, particularly in combination with convolutional neural networks (CNNs). A dynamic image encodes temporal data such as RGB or optical flow videos by using the concept of 'rank pooling'. The idea is to learn a ranking machine that captures the temporal evolution of the data and to use the parameters of the latter as a representation. We call the resulting representation dynamic image because it summarizes the video dynamics in addition to appearance. This powerful idea allows to convert any video to an image so that existing CNN models pre-trained with still images can be immediately extended to videos. We also present an efficient approximate rank pooling operator that runs two orders of magnitude faster than the standard ones with any loss in ranking performance and can be formulated as a CNN layer. To demonstrate the power of the representation, we introduce a novel four stream CNN architecture which can learn from RGB and optical flow frames as well as from their dynamic image representations. We show that the proposed network achieves state-of-the-art performance, 95.5 and 72.5 percent accuracy, in the UCF101 and HMDB51, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.