Abstract

Recently, locality-constrained linear coding (LLC) as a coding strategy has attracted much attention, due to its better reconstruction than sparse coding and vector quantization. However, LLC ignores the weight information of codewords during the coding stage, and assumes that every selected base has same credibility, even if their weights are different. To further improve the discriminative power of LLC code, we propose a weighted LLC algorithm that considers the codeword weight information. Experiments on the KTH and UCF datasets show that the recognition system based on WLLC achieves better performance than that based on the classical LLC and VQ, and outperforms the recent classical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.