Abstract
This paper presents an efficient and novel framework for human action recognition based on representing the motion of human body-joints and the theory of nonlinear dynamical systems. Our work is motivated by the pictorial structures model and advances in human pose estimation. Intuitively, a collective understanding of human joints movements can lead to a better representation and understanding of any human action through quantization in the polar space. We use time-delay embedding on the time series resulting of the evolution of human body-joints variables along time to reconstruct phase portraits. Moreover, we train SVM models for action recognition by comparing the distances between trajectories of human body-joints variables within the reconstructed phase portraits. The proposed framework is evaluated on MSR-Action3D dataset and results compared against several state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.