Abstract

In the present work, we propose an Action Principle for Action-dependent Lagrangians by generalizing the Herglotz variational problem for several independent variables. This Action Principle enables us to formulate Lagrangian densities for non-conservative fields. In special, from a Lagrangian depending linearly on the Action, we obtain a generalized Einstein's field equations for a non-conservative gravity and analyze some consequences of their solutions to cosmology and gravitational waves. We show that the non-conservative part of the field equations depends on a constant cosmological four-vector. Depending on this four-vector, the theory displays damped/amplified gravitational waves and an accelerating Universe without dark energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.