Abstract

Several research programmes have demonstrated how Transcranial Ultrasound Stimulation (TUS) can non-invasively and reversibly mechanically perturb neuronal functions. However, the mechanisms through which such reversible and a priori non-damaging behaviour can be observed remain largely unknown. While several TUS protocols have demonstrated motor and behavioural alterations in in vivo models, in vitro studies remain scarce. In particular, an experimental framework able to load mechanically an individual neuron in a controlled manner and simultaneously measure the generation and evolution of action potentials before, during and after such load, while allowing for direct microscopy, has not been successfully proposed. To this end, we herein present a multiphysics setup combining nanoindentation and patch clamp systems, assembled in an inverted microscope for simultaneous bright-field or fluorescence imaging. We evaluate the potential of the platform with a set of experiments in which single dorsal root ganglion-derived neuronal cell bodies are compressed while their spontaneous activity is recorded. We show that these transient quasi-static mechanical loads reversibly affect the amplitude and rate of change of the neuronal action potentials, which are smaller and slower upon indentation, while irreversibly altering other features. The ability to simultaneously image, mechanically and electrically manipulate and record single cells in a perturbed mechanical environment makes this system particularly suitable for studying the multiphysics of the brain at the cell level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call