Abstract

The present study was designed to investigate the effect of the opioid agonist FK 33-824 on basal and hCG-induced progesterone (P4), cAMP and cGMP secretion and on the phosphoinositide-specific phospholipase C signalling system in separated porcine small (SLCs) and large luteal cells (LLCs). Unit gravity sedimentation was used to produce cultures of small and large luteal cells from corpora lutea (CL) on days 8-10 of the oestrous cycle. In order to examine the effect of FK 33-824 on P4 and cyclic nucleotide release, SLCs and LLCs were incubated in M199 medium at 37 degrees C in 5% CO2:95% air, for 12 h. Small and large luteal cells were treated with hCG (100 ng/ml) alone, FK 33-824 (10(-9) M) alone or were co-treated with FK 33-824 and hCG and with the opioid antagonist, naloxone (NAL, 10(-5) M). FK 33-824 alone did not influence P4 secretion by LLCs and SLCs. However, FK 33-824 completely abolished the stimulatory effect of hCG on P4 secretion by SLCs. The addition of FK 33-824 was followed by a significant increase in cAMP release (p<0.01) by LLCs and a decrease in cGMP secretion by SLCs (p<0.05). The effect of FK 33-824 was blocked by NAL, which strongly suggests that the observed influence of this opioid agonist was achieved through its binding to opioid receptors in luteal membranes. In the presence of hCG, cAMP secretion by both SLCs and LLCs was many-fold higher than in the control group. As regards cGMP output, only LLCs showed elevated secretion of this cyclic nucleotide under the influence of hCG. With the aim of examining the influence of FK 33-824 on phosphatidylinositol hydrolysis, LLCs, SLCs and mixed small and large cells were labelled with [3H]-myo-inositol (100 microCi/ml) for 3 h at 37 degrees C. The cells were then incubated in M199 medium supplemented with 10 mM LiCl, 1% BSA, and antibiotics in the presence and absence of FK 33-824 (10(-9) M) at 37 degrees C for 30 min. Liberated labelled inositol mono-, bis-, and trisphosphates (IPs) were isolated and quantified by affinity chromatography on columns of AG 1-X8 resin, followed by liquid scintillation spectroscopy. Inositol phosphate accumulation in LLCs, SLCs, and mixed small and large cells was not altered by treatment with FK 33-824 at the dose used. In view of these findings we suggest that opioid peptides affect pig corpus luteum steroid secretion, and the response is probably mediated through cyclic nucleotides, but not IPs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call