Abstract

The 3'-->5' exoribonucleases, RNase II and polynucleotide phosphorylase (PNPase), play an essential role in degrading fragments of mRNA generated by prior cleavages by endonucleases. We have assessed the ability of small RNA substrates containing defined stem-loop structures and variable 3' extensions to impede the exonucleolytic activity of these enzymes. We find that stem-loops containing five G-C base pairs do not block either enzyme; in contrast, more stable stem-loops of 7, 9, or 11 bp block the processive action of both enzymes. Under conditions where enzyme activity is limiting, both enzymes stall and dissociate from their substrates six to nine residues, on average, from the base of a stable stem-loop structure. Our data provide a clear mechanistic explanation for the previous observation that RNase II and PNPase behave as functionally redundant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call