Abstract

Particle films with different properties have been developed for arthropod pest control. Two basic film types are hydrophobic and hydrophilic films. The hydrophilic film formulations differ in the amount and kind of spreader-sticker that is incorporated into the kaolin particles. The effects of particle film type (hydrophobic versus hydrophilic) and formulation (Surround versus Surround WP) on the biology and behavior of pear psylla, Cacopsylla pyricola (Foerster), were investigated on pear in a series of laboratory studies. Scanning electron microscopy determined that the number of particles that attached to the front tibia of adult psylla differed by particle formulation but the particle sizes were fairly uniform and ranged from 3.6 to 4.5 microm in diameter. Adults had difficulty grasping particle film-treated leaves, and this effect was influenced by film type and leaf surface. Choice and no-choice tests indicated that adult settling and oviposition were very low, regardless of film type or formulation. Under no-choice conditions, adult mortality was low, in part, because the adults were able to feed through all 3% particle films, but at reduced rates. However, the mortality of adults sprayed with 3% particle film solutions ranged from 22.2 to 62.5% within 72 h after treatment, and mortalities differed most between the hydrophilic formulations. Nymphs born on particle film-treated foliage incurred high mortalities ranging from 58.9 to 82.0% by the time they reached the fifth instar and were affected most by particle film type. Nymphal development was not affected by particle film type or formulation. Egg fertility and nymphal hatch also were unaffected by particle films. These studies determined that there are a number of biological effects particle films have on pear psylla beyond the deterrence of adult settling and oviposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.