Abstract

This study aims to examine the effectiveness of mycocins produced by Wickerhamomyces anomalus in inhibiting Malassezia pachydermatis, a yeast commonly found in the ear canal of dogs. M. pachydermatis has a zoophilic origin and can be found in mammals, and frequently in dogs, where it mainly colonizes the ear canal region and the skin, leading to lesions that are difficult to treat. The antimicrobial mechanism was evaluated using dilutions of supernatant with enzymatic activity, which may include β-glucanases, glycoproteins known to act on microorganism cell walls. However, it is important to note that this supernatant may contain other compounds as well. β-glucanases in the mycocins supernatant were found at a concentration of 0.8 U/mg. The susceptibility of M. pachydermatis isolates was tested using the microdilution method. The isolates suffered 100% inhibition when tested with the culture supernatant containing mycocins. In the proteinases production test, 44% of the isolates tested were strong proteinases producers. Subsequently all these isolates suffered inhibition of their activity when tested in research medium containing mycocins supernatant at a subinhibitory concentration of β-glucanases. This shows that mycocins can inhibit the production of proteinases, a virulence factor of M. pachydermatis. The viability test showed the antifungal action of mycocins in inhibiting the viability of M. pachydermatis cells after a period of 8 hours of contact. These results support the antimicrobial potential of mycocins and their promise as a therapeutic option.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call