Abstract
The hydrolysis of 1,2-diolein (DO) monomolecular films by Humicola lanuginosa lipase (HLL) was studied by simultaneous measuring the decrease in the film area and the changes in the surface potential in the “zero-order trough” at constant surface pressure and in the presence of β-cyclodextrin (β-CD). The decrease with time in the film area reflects both the reduction in the area per molecule due to the transformation of substrate DO molecules into the products molecules of monoolein (MO) and oleic acid (OA) and the desorption of the soluble inclusion complexes β-CD–MO and β-CD–OA. The surface potential data were interpreted as an accumulation at the interface of negatively charged products of OA and insoluble β-CD–DO complexes. In the proposed kinetic model, the product solubilization rates in the presence of β-CD and the flux supplied progressively by the moving barrier from the reservoir to the reaction compartment in order to keep the constant surface pressure were taken into account. The surface concentrations of MO and OA transiently present at the interface were determined. The values of the global kinetic constant Q m ′ of hydrolysis of DO to MO were obtained. Comparison with the values of the global kinetic constant of hydrolysis of monoglyceride MO to OA shows that the rates of hydrolysis of diglyceride and monoglyceride by HLL are of the same order of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.