Abstract
Abstract Let m , n {m,n} be the fixed positive integers and let ℛ {\mathcal{R}} be a ring. In 1978, Herstein proved that a 2-torsion free prime ring ℛ {\mathcal{R}} is commutative if there is a nonzero derivation d of R such that [ d ( ϱ ) , d ( ξ ) ] = 0 {[d(\varrho),d(\xi)]=0} for all ϱ , ξ ∈ R {\varrho,\xi\in R} . In this article, we study the above mentioned classical result for higher derivations and describe the structure of semiprime rings by using the invariance property of prime ideals under higher derivations. Precisely, apart from proving some other important results, we prove the following. Let ( d i ) i ∈ ℕ {(d_{i})_{i\in\mathbb{N}}} and ( g j ) j ∈ ℕ {(g_{j})_{j\in\mathbb{N}}} be two higher derivations of semiprime ring ℛ {\mathcal{R}} such that [ d n ( ϱ ) , g m ( ξ ) ] ∈ Z ( ℛ ) {[d_{n}(\varrho),g_{m}(\xi)]\in Z(\mathcal{R})} for all ϱ , ξ ∈ ℐ {\varrho,\xi\in\mathcal{I}} , where ℐ {\mathcal{I}} is an ideal of ℛ {\mathcal{R}} . Then either ℛ {\mathcal{R}} is commutative or some linear combination of ( d i ) i ∈ ℕ {(d_{i})_{i\in\mathbb{N}}} sends Z ( ℛ ) {Z(\mathcal{R})} to zero or some linear combination of ( g j ) j ∈ ℕ {(g_{j})_{j\in\mathbb{N}}} sends Z ( ℛ ) {Z(\mathcal{R})} to zero. We enrich our results with examples that show the necessity of their assumptions. Finally, we conclude our paper with a direction for further research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.