Abstract
Dormancy of scarified seeds of Stylosanthes humilis was broken by acidic Al3+ and Fe3+ solutions. Fe+3-stimulated seeds exhibited a high activity of 1-aminocyclopropane-1-carboxylate (ACC) oxidase and produced great amounts of ethylene, which showed correlated with the germination process. In addition, specific inhibitors of ethylene biosynthesis and action largely depressed the Fe3+-stimulated germination, leading to the conclusion that the ion broke dormancy by triggering ethylene production by the seeds. By contrast, inhibitors of ethylene biosynthesis and action did not impair germination of Al3+-stimulated dormant seeds. Moreover, ethylene production and activity of ACC oxidase of Al3+-treated seeds was substantially decreased by inhibitors of ethylene biosynthesis, but germination kept large. Together these data suggest that ethylene biosynthesis was not required in the chain of events triggered by Al3+ leading to dormancy breakage. Methyl viologen (MV), a reactive oxygen species-generating compound, broke dormancy of seeds to the same extent as Al3+ did. Germination of both Al3+- and MV-stimulated dormant seeds was inhibited by sodium selenate, an antioxidant compound; selenate, however had no effect on germination of Fe3+-stimulated seeds. Together these data indicate that the mechanisms underlying the germination of Al3+- and Fe3+-treated seeds are not the same.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.