Abstract

The loop variable technique (for open strings in flat space) is a gauge-invariant generalization of the renormalization group method for obtaining equations of motion. Unlike the beta functions, which are only proportional to the equations of motion, here it gives the full equation of motion. In an earlier paper, a technique was described for adapting this method to open strings in gravitational backgrounds. However, unlike the flat space case, these equations cannot be derived from an action and are therefore not complete. This is because there are ambiguities in the method that involve curvature couplings that cannot be fixed by appealing to gauge invariance alone but need a more complete treatment of the closed string background. An indirect method to resolve these ambiguities is to require symmetricity of the second derivatives of the action. In general this will involve modifying the equations by terms with arbitrarily high powers of curvature tensors. This is illustrated for the massive spin-two field. It is shown that in the special case of an AdS or dS background, the exact action can easily be determined in this way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call