Abstract

Many types of cancer cells possess the ability to evade apoptosis, leading to their rapid and uncontrolled proliferation. As major regulators of apoptosis, Bcl-2 proteins serve as emerging targets for novel chemotherapeutic strategies. In this study, we examined the involvement of Bcl-2 proteins in apoptosis induced by the chemotherapeutic agent actinomycin D. A dramatic decrease in anti-apoptotic myeloid leukemia cell differentiation protein (Mcl-1) mRNA and protein expression was detected upon actinomycin D treatment. Further, Mcl-l over-expression caused resistance to cell death upon treatment with actinomycin D, implicating a role for the down-regulation of Mcl-1 in actinomycin D-induced apoptosis. We also explored the therapeutic potential of actinomycin D in combination with ABT-737, an experimental agent that inhibits anti-apoptotic Bcl-2 proteins. Actinomycin D sensitized cells to ABT-737 treatment in a Bak- or Bax-dependent manner. Importantly, low concentrations of actinomycin D and ABT-737 were more effective in inducing cell death in transformed cells than their untransformed counterparts. A synergistic effect of actinomycin D and ABT-737 on cell death was observed in several human tumor cell lines. Like actinomycin D treatment, knocking down Mcl-1 expression greatly sensitized tumor cells to ABT-737, and Mcl-1 over-expression abrogated the cytotoxic effect induced by ABT-737 and actinomycin D. These results suggest that the down-regulation of Mcl-1 by actinomycin D is likely responsible for the observed synergistic effect between the two drugs. Overall, our studies provide compelling evidence that the combination of actinomycin D and ABT-737 may lead to an effective cancer treatment strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call