Abstract

The potent RNA polymerase inhibitors actinomycin D and 7-aminoactinomycin D are shown to bind to single-stranded DNAs. The binding occurs with particular DNA sequences containing guanine residues and is characterized by hypochromic UV absorption changes similar to those observed in interactions of the drugs with double-stranded duplex DNAs. The most striking feature of the binding is the dramatic (ca. 37-fold) enhancement in fluorescence that occurs when the 7-aminoactinomycin is bound to certain single-stranded DNAs. This fluorescence of the complex is also characterized by a 40-nm hypsochromic shift in the emission spectrum of the drug and an increase in the emission anisotropy relative to the free drug or the drug bound to calf thymus DNA. The fluorescence lifetimes change in the presence of the single-stranded DNA in a manner compatible with the intensity difference. Thus, there is an increase in the fraction of the emission corresponding to a 2-ns lifetime component compared to the predominant approximately 0.5-ns lifetime of the free drug. The 7-aminoactinomycin D comigrates in polyacrylamide gels with the single-stranded DNAs, and the fluorescence of the bound drug can be visualized by excitation with 540-nm light. The binding interactions are characterized by association constants of 2.0 x 10(6) to 1.1 x 10(7) M-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.