Abstract

The actinobacterial diversity was investigated in the sediments of five cold springs in Wuli region on the Qinghai-Tibet Plateau using 16S rRNA gene phylogenetic analysis. The actinobacterial communities of the studied cold springs were diverse and the obtained actinobacterial operational taxonomic units were classified into 12 actinobacterial orders (e.g., Acidimicrobiales, Corynebacteriales, Gaiellales, Geodermatophilales, Jiangellales, Kineosporiales, Micromonosporales, Micrococcales, Nakamurellales, Propionibacteriales, Pseudonocardiales, Streptomycetales) and unclassified Actinobacteria. The actinobacterial composition varied among the investigated cold springs and were significantly correlated (r = 0.748, P = 0.021) to environmental variables. The actinobacterial communities in the cold springs were more diverse than other cold habitats on the Tibetan Plateau, and their compositions showed unique geographical distribution characteristics. Statistical analyses showed that biogeographical isolation and unique environmental conditions might be major factors influencing actinobacterial distribution among the investigated cold springs.

Highlights

  • A large portion of the Qinghai-Tibet Plateau (QTP) is underlain by permafrost, which is suitable for gas hydrate development (Wang and French, 1995; Zhou et al, 2000)

  • Recent evidence indicates that gas hydrate is present in the permafrost zone of Qilian Mountains in the northern margin of QTP (Lu et al, 2009; Zhu et al, 2010)

  • The objective of this study was to investigate the actinobacterial diversity and community structure in five Tibetan cold springs based on 16S rRNA gene phylogenetic analyses

Read more

Summary

Introduction

A large portion of the Qinghai-Tibet Plateau (QTP) is underlain by permafrost, which is suitable for gas hydrate development (Wang and French, 1995; Zhou et al, 2000). The methane-fueled communities in marine cold seeps possess high metabolic rates, and they play important roles in carbon and nitrogen cycling (Hinrichs and Boetius, 2002; Boetius and Suess, 2004; Nakagawa et al, 2007; Reeburgh, 2007; Dang et al, 2010). Because of their potentially important role in global climate change, microbial communities in marine cold seeps have received much attention (Sibuet and Olu-Le Roy, 2002; Reeburgh, 2007)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.