Abstract
Antimicrobial peptides, human beta-defensin (hBD), and the 18-kDa cationic antimicrobial protein (CAP18) are components of innate immunity. These peptides have antimicrobial activity against bacteria, fungi, and viruses. Actinobacillus actinomycetemcomitans is a gram-negative facultative anaerobe implicated in the initiation of periodontitis. The innate immunity peptides have antibacterial activity against A. actinomycetemcomitans. We investigated the molecular mechanism of human gingival epithelial cells (HGEC) responding to exposure to A. actinomycetemcomitans. HGEC constitutively express hBD1 and inducibly express hBD2, hBD3, and CAP18 on exposure to A. actinomycetemcomitans. The level of expression varies among clinical isolates. In the signaling pathway for hBD2 induction by the bacterial contact, we demonstrate that the mitogen-activated protein (MAP) kinase and not the NF-kappaB transcription factor pathway is used. We found the outer membrane protein 100 (Omp100; identified by molecular mass) is the component inducing the hBD2 response. Omp100 binds to fibronectin, an extracellular matrix inducing hBD2 via the MAP kinase pathway. Anti-integrin alpha(5)beta(1), antifibronectin, genistein, and PP2 suppress the Omp100-induced expression of hBD2, suggesting that Src kinase is involved through integrin alpha(5)beta(1). The inflammatory cytokines, tumor necrosis factor alpha (TNF-alpha), interleukin-1beta (IL-1beta), IL-6 and IL-8, produced by HGEC on contact with A. actinomycetemcomitans also stimulate expression of hBD2. Further, neutralizing antibody against TNF-alpha or IL-8 partially inhibits the induction of hBD2 on bacterial contact. Therefore, we found that the induction of the antimicrobial peptides is mediated by a direct response principally through an Omp100-fibronectin interaction, and using secondary stimulation by inflammatory cytokines induced by the bacterial exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.