Abstract

Apicomplexan parasites move and actively enter host cells by substrate-dependent gliding motility, an unusual form of eukaryotic locomotion that differs fundamentally from the motility of prokaryotic and viral pathogens. Recent research has uncovered some of the cellular and molecular mechanisms underlying parasite motility, transmigration, and cell invasion during life cycle progression. The gliding motor machinery is embedded between the plasma membrane and the inner membrane complex, a unique double membrane layer. It consists ofimmobilized unconventional myosins, short actin stubs, and TRAP-family invasins. Assembly of this motor machinery enables force generation between parasite cytoskeletal components and an extracellular substratum. Unique properties of the individual components suggest that the rational design of motility inhibitors may lead to new intervention strategies to combat some of the most devastating human and livestock diseases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.