Abstract

Many studies have confirmed that traditional Chinese herbs exert potential anti-tumor effects. Actinidia Chinensis Planch root has been used as a traditional Chinese medicine (TCM) for thousands of years. However, the mechanism of anti-tumor effects of Actinidia Chinensis Planch root has not been clearly clarified. To explore the molecular biological mechanisms underlying the inhibitory effect of Actinidia Chinensis Planch root extract (acRoots) on hepatocellular carcinoma (HCC). In our previous study, we used mRNA chip analyses to identify genes regulated by acRoots. Further analyses of altered genes led to the identification of a key regulator of genes that responds to acRoots. We explored the effects of acRoots on the proliferation and invasion of HCC cells via cell counting as well as transwell assays, and further explored the molecular mechanisms underlying the effects of acRoots on HCC cells using qRT-PCR, western blot, and Chip-PCR. Increasing the concentration of acRoots as well as prolonging its action time enhanced the inhibitory activity of acRoots as well as its cytotoxicity against HCC cells. High TARBP2 expression in HCC cells, which is associated with advanced-stage HCC and poor prognoses in HCC patients, was downregulated by treatment with acRoots. Furthermore, acRoots inhibited proliferation, invasion, and epithelial-to-mesenchymal transition by downregulating TARBP2 expression. HCC cells with higher TARBP2 expression were more sensitive to acRoots. The expression of TARBP2 and DLX2 in HCC patients and HCC cell lines was significantly positively correlated, and DLX2 as a transcription factor may promote TARBP2 expression, thereby further activating the JNK/AKT signaling pathway leading to the inhibition of HCC. acRoots inhibited the malignant behavior of HCC cells by inhibiting TARBP2 expression, which is affected by the transcription factor DLX2, leading to a reduction in JNK/AKT signaling pathway activation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.