Abstract

BackgroundMonogenean flatworms are the main fish ectoparasites inflicting serious economic losses in aquaculture. The polyopisthocotylean Sparicotyle chrysophrii parasitizes the gills of gilthead sea bream (GSB, Sparus aurata) causing anaemia, lamellae fusion and sloughing of epithelial cells, with the consequent hypoxia, emaciation, lethargy and mortality. Currently no preventive or curative measures against this disease exist and therefore information on the host-parasite interaction is crucial to find mitigation solutions for sparicotylosis. The knowledge about gene regulation in monogenean-host models mostly comes from freshwater monopysthocotyleans and almost nothing is known about polyopisthocotyleans. The current study aims to decipher the host response at local (gills) and systemic (spleen, liver) levels in farmed GSB with a mild natural S. chrysophrii infection by transcriptomic analysis.ResultsUsing Illumina RNA sequencing and transcriptomic analysis, a total of 2581 differentially expressed transcripts were identified in infected fish when compared to uninfected controls. Gill tissues in contact with the parasite (P gills) displayed regulation of fewer genes (700) than gill portions not in contact with the parasite (NP gills) (1235), most likely due to a local silencing effect of the parasite. The systemic reaction in the spleen was much higher than that at the parasite attachment site (local) (1240), and higher than in liver (334). NP gills displayed a strong enrichment of genes mainly related to immune response and apoptosis. Processes such as apoptosis, inflammation and cell proliferation dominated gills, whereas inhibition of apoptosis, autophagy, platelet activation, signalling and aggregation, and inflammasome were observed in spleen. Proteasome markers were increased in all tissues, whereas hypoxia-related genes were down-regulated in gills and spleen.ConclusionsContrasting forces seem to be acting at local and systemic levels. The splenic down-regulation could be part of a hypometabolic response, to counteract the hypoxia induced by the parasite damage to the gills and to concentrate the energy on defence and repair responses. Alternatively, it can be also interpreted as the often observed action of helminths to modify host immunity in its own interest. These results provide the first toolkit for future studies towards understanding and management of this parasitosis.

Highlights

  • Monogenean flatworms are the main fish ectoparasites inflicting serious economic losses in aquaculture

  • The current study aims to set bases for deciphering host response at local and systemic levels in farmed gilthead sea bream (GSB) with a mild natural S. chrysophrii infection by transcriptomic analysis, by defining the most relevant pathways involved in the pathology

  • Sparicotyle chrysophrii induces local and systemic effects A preliminary PCR-array, profiling the expression levels in gills and spleen of 45 selected genes related to hypoxia, inflammation, iron metabolism, tight junction proteins, immune system, mucins, apoptosis, antioxidant activity and cell growth and regeneration showed that Sparicotyle infections had a potent effect both locally and systemically (Additional file 1A)

Read more

Summary

Introduction

Monogenean flatworms are the main fish ectoparasites inflicting serious economic losses in aquaculture. It is estimated that the world annual grow-out loss due to parasites in finfish farming ranges from 1 to 10% of harvest size, with an annual cost of $1.05 to $9.58 billion [5]. These economic losses incurred from parasitic diseases are due not exclusively to direct mortalities, and to decreases in growth performance, feed conversion and product quality, low reproduction efficacy, increased susceptibility to other diseases and negative public image of aquaculture in a long term [5, 6]. It has been suggested that this monogenean causes an increase by > 0.4 of the total feed conversion rate (FCR) of GSB, which translates in an increased feed requirement for over 50,000 tons along production (Rigos G., unpublished. data)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call