Abstract

Mechanosensitive (MS) channels are expressed in various cells in a wide range of phylogenetic lineages from bacteria to humans. Understanding the molecular and biophysical mechanisms of their activation is an important research pursuit. It is controversial whether eukaryotic MS channels need accessory proteins -- typically cytoskeletal structures -- for activation, because MS channel activities are modulated by pharmacological treatments that affect the cytoskeleton. Here we demonstrate that direct mechanical stimulation (stretching) of an actin stress fiber using optical tweezers can activate MS channels in cultured human umbilical vein endothelial cells (HUVECs). Furthermore, by using high-speed total internal reflection microscopy, we visualized spots of Ca(2+) influx across individual MS channels distributed near focal adhesions in the basal surface of HUVECs. This study provides the first direct evidence that the cytoskeleton works as a force-transmitting and force-focusing molecular device to activate MS channels in eukaryotic cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.