Abstract
In a 3D environment, motile cells accommodate their protruding and retracting activities to geometrical cues. Dictyostelium cells migrating on a perforated film explored its holes by forming actin rings around their border and extending protrusions through the free space. The response was initiated when an actin wave passed a hole, and the rings persisted only in the PIP3-rich territories surrounded by a wave. To reconstruct actin structures from cryo-electron tomograms, actin rings were identified by cryo-correlative light and electron microscopy, and thin wedges of relevant regions were obtained by cryo-focused ion-beam milling. Retracting stages were distinguished from protruding ones by the accumulation of myosin-II. Early actin rings consisted of filaments pointing upright from the membrane, entangled with a meshwork of filaments close to the membrane.Branches identified at later stages suggested that formin-based nucleation of filaments was followed by Arp2/3-mediated network stabilization, which prevented buckling of the force-generating filaments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.