Abstract
Mechanical forces are integral to many cellular processes, including clathrin-mediated endocytosis, a principal membrane trafficking route into the cell. During endocytosis, forces provided by endocytic proteins and the polymerizing actin cytoskeleton reshape the plasma membrane into a vesicle. Assessing force requirements of endocytic membrane remodeling is essential for understanding endocytosis. Here, we determined actin-generated force applied during endocytosis using FRET-based tension sensors inserted into the major force-transmitting protein Sla2 in yeast. We measured at least 8 pN force transmitted over Sla2 molecule, hence possibly more than 300-880 pN applied during endocytic vesicle formation. Importantly, decreasing cell turgor pressure and plasma membrane tension reduced force transmitted over the Sla2. The measurements in hypotonic conditions and mutants lacking BAR-domain membrane scaffolds then showed the limits of the endocytic force-transmitting machinery. Our study provides force values and force profiles critical for understanding the mechanics of endocytosis and potentially other key cellular membrane-remodeling processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.