Abstract

Mammalian oocyte maturation involves two successive rounds of extremely asymmetric cell divisions (known as polar body extrusion) to generate a functional haploid egg. Successful polar body extrusion relies on establishment of an asymmetric spindle position and cortical polarity. Decades of studies using mouse oocytes as a model have revealed critical roles for a dynamic actin cytoskeleton in this process. Here, we review the contribution of actin to the critical events during oocyte meiotic cell divisions with an emphasis on recent advances in understanding the underlying molecular and physical mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.