Abstract

Contractile force generated in actomyosin stress fibers (SFs) is transmitted along SFs to the extracellular matrix (ECM), which contributes to cell migration and sensing of ECM rigidity. In this study, we show that efficient force transmission along SFs relies on actin crosslinking by α-actinin. Upon reduction of α-actinin-mediated crosslinks, the myosin II activity induced flows of actin filaments and myosin II along SFs, leading to a decrease in traction force exertion to ECM. The fluidized SFs maintained their cable integrity probably through enhanced actin polymerization throughout SFs. A computational modeling analysis suggested that lowering the density of actin crosslinks caused viscous slippage of actin filaments in SFs and, thereby, dissipated myosin-generated force transmitting along SFs. As a cellular scale outcome, α-actinin depletion attenuated the ECM-rigidity-dependent difference in cell migration speed, which suggested that α-actinin-modulated SF mechanics is involved in the cellular response to ECM rigidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.