Abstract

Pulmonary microvascular barrier dysfunction is a hallmark feature of acute lung injury (ALI). IQGAP1 is a ubiquitously expressed scaffolding protein known to regulate cancer metastasis, angiogenesis, and barrier stability. However, the function of IQGAP1 in lipopolysaccharide (LPS)-induced microvascular endothelial hyperpermeability remains poorly understood. In the present study, we demonstrated that IQGAP1 was markedly upregulated in LPS-induced ALI models and rat pulmonary microvascular endothelial cells (RPMVECs). Lentivirus-mediated knockdown of IQGAP1 significantly attenuated the formation of actin stress fibers, phosphorylation of myosin light chain (MLC), and disruption of VE-cadherin, thereby protecting the RPMVECs barrier failure from LPS damage. In addition, IQGAP1 depletion reduced the reactive oxygen species (ROS)-mediated increase in intracellular adhesion molecule-1 (ICAM-1) in RPMVECs stimulated with LPS. Mechanistically, we found that the upregulation of IQGAP1 affected the activity of Rap1 and the downstream phosphorylation of Src. In conclusion, these findings reveal an essential mechanism by which increased IQGAP1 in LPS-treated RPMVECs promotes barrier dysfunction and ICAM-1 upregulation, at least in part by regulating Rap1/Src signalling, indicating that IQGAP1 may be a potential therapeutic target to prevent endothelial hyperpermeability and inflammation in ALI.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call