Abstract

The acinar epithelial cells of the lacrimal gland exocytose the contents of mature secretory vesicles containing tear proteins at their apical membranes in response to secretagogues. Here we use time-lapse confocal fluorescence microscopy and fluorescence recovery after photobleaching to investigate the changes in actin filaments located beneath the apical membrane during exocytosis evoked by the muscarinic agonist, carbachol (100 microM). Time-lapse confocal fluorescence microscopy of apical actin filaments in reconstituted rabbit lacrimal acini transduced with replication-deficient adenovirus containing GFP-actin revealed a relatively quiescent apical actin array in resting acini. Carbachol markedly increased apical actin filament turnover and also promoted transient actin assembly around apparent fusion intermediates. Fluorescence recovery after photobleaching measurements revealed significant (P< or =0.05) increases and decreases, respectively, in mobile fraction (Mf) and turnover times (t1/2) for apical actin filaments in carbachol-stimulated acini relative to untreated acini. The myosin inhibitors, 2,3-butanedione monoxime (BDM, 10 mM, 15 minutes) and ML-7 (40 microM, 15 minutes), significantly decreased carbachol-stimulated secretion of bulk protein and the exogenous secretory vesicle marker, syncollin-GFP; these agents also promoted accumulation of actin-coated structures which were enriched, in transduced acini, in syncollin-GFP, confirming their identity as fusion intermediates. Actin-coated fusion intermediates were sized consistent with incorporation of multiple rather than single secretory vesicles; moreover, BDM and ML-7 caused a shift towards formation of multiple secretory vesicle aggregates while significantly increasing the diameter of actin-coated fusion intermediates. Our findings suggest that the increased turnover of apical actin filaments and the interaction of actin with non-muscle myosin II assembled around aggregates of secretory vesicles facilitate exocytosis in lacrimal acinar epithelial cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.