Abstract

Identification is the core of any authentication protocol design as the purpose of the authentication is to verify the user’s identity. The efficient establishment and verification of identity remain a big challenge. Recently, biometrics-based identification algorithms gained popularity as a means of identifying individuals using their unique biological characteristics. In this paper, we propose a novel and efficient identification framework, ActID, which can identify a user based on his/her hand motion while walking. ActID not only selects a set of high-quality features based on Optimal Feature Evaluation and Selection and Correlation-based Feature Selection algorithms but also includes a novel sliding window based voting classifier. Therefore, it achieves several important design goals for gait authentication based on resource-constrained devices, including lightweight and real-time classification, high identification accuracy, a minimum number of sensors, and a minimum amount of data collected. Performance evaluation shows that ActID is cost-effective and easily deployable, satisfies real-time requirements, and achieves a high identification accuracy of 100%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.