Abstract

Salt-inducible kinase (SIK), a serine/threonine protein kinase expressed at an early stage of adrenocorticotropic hormone (ACTH) stimulation in Y1 mouse adrenocortical tumor cells, repressed the cAMP-responsive element (CRE)-dependent gene transcription by acting on the basic leucine zipper domain of the CRE-binding protein (Doi, J., Takemori, H., Lin, X.-z., Horike, N., Katoh, Y., and Okamoto, M. (2002) J. Biol. Chem. 277, 15629-15637). The mechanism of SIK-mediated gene regulation has been further explored. Here we show that SIK changes its subcellular location after the addition of ACTH. The immunocytochemical and fluorocytochemical analyses showed that SIK was present both in the nuclear and cytoplasmic compartments of resting cells; when the cells were stimulated with ACTH the nuclear SIK moved into the cytoplasm within 15 min; the level of SIK in the nuclear compartment gradually returned to the initial level after 12 h. SIK translocation was blocked by pretreatment with leptomycin B. A mutant SIK whose Ser-577, the cAMP-dependent protein kinase (PKA)-dependent phosphorylation site, was replaced with Ala could not move out of the nucleus under stimulation by ACTH. As expected, the degree of repression exerted by SIK on CRE reporter activity was weak as long as SIK was present in the cytoplasmic compartment. The same was true for the SIK-mediated repression of a steroidogenic acute regulatory (StAR) protein-gene promoter, which contained a CRE-like sequence at -95 to -85 bp. These results suggest that in the ACTH-stimulated Y1 cells the nuclear SIK was PKA-dependently phosphorylated, and the phosphorylated SIK was then translocated out of the nuclei. This intracellular translocation of SIK, a CRE-repressor, may account for the time-dependent change in the level of ACTH-activated expression of the StAR protein gene.

Highlights

  • Salt-inducible kinase (SIK), a serine/threonine protein kinase expressed at an early stage of adrenocorticotropic hormone (ACTH) stimulation in Y1 mouse adrenocortical tumor cells, repressed the cAMP-responsive element (CRE)-dependent gene transcription by acting on the basic leucine zipper domain of the CRE-binding protein (Doi, J., Takemori, H., Lin, X.-z., Horike, N., Katoh, Y., and Okamoto, M. (2002) J

  • Because ACTH enhanced the biosynthesis of SIK protein in Y1 cells [35], the immunochemically stained signal after the stimulation must have resulted from the sum total of the SIK present before ACTH treatment and that newly synthesized in the cytoplasm after the treatment

  • These results indicated that ACTH induced the nuclear export of SIK through the activation of cAMP/protein kinase (PKA) signaling

Read more

Summary

Introduction

Salt-inducible kinase (SIK), a serine/threonine protein kinase expressed at an early stage of adrenocorticotropic hormone (ACTH) stimulation in Y1 mouse adrenocortical tumor cells, repressed the cAMP-responsive element (CRE)-dependent gene transcription by acting on the basic leucine zipper domain of the CRE-binding protein (Doi, J., Takemori, H., Lin, X.-z., Horike, N., Katoh, Y., and Okamoto, M. (2002) J. These results indicated that Ser-577 was important for the nuclear export of SIK protein, and this amino acid residue might be phosphorylated by PKA in the ACTH-stimulated cells.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call