Abstract

Therapeutic irradiation can cause bone loss, whereas antioxidant supplementation is considered to attenuate irradiation-mediated damages. This study examined whether or not acteoside inhibits irradiation-mediated changes in viability and proliferation of MC3T3-E1 cells. X-ray radiation at >4 Gy not only decreased cell viability and DNA synthesis in the cells, but also increased intracellular levels of reactive oxygen species (ROS) and phosphorylated p66Shc protein. Irradiation at 8Gy also decreased intracellular levels of reduced glutathione (GSH) and induced G1 phase arrest of cell cycle progression with the attendant increase of p21 induction. Pretreatment with acteoside inhibited the irradiation-mediated decreases in viability and DNA synthesis by restoring the radiation-mediated changes in the levels of ROS, GSH, p21, and p-p66Shc to the untreated control levels. These inhibitory activities of acteoside were greater than that of a synthetic antioxidant compound or N-acetyl cysteine did. Collectively, acteoside treatment may prevent irradiation-induced oxidative damages to osteoblasts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.