Abstract

BackgroundGlaucoma is the world's second biggest cause of blindness, and patients progressively lose their eyesight. The current clinical treatment for glaucoma involves controlling intraocular pressure with drugs or surgery; however, some patients still progressively lose their eyesight. This treatment is also similar to the treatment of traumatic optic neuropathy. Thus, saving retinal ganglion cells (RGCs) from apoptosis is essential.MethodsThe role of Acteoside on autophagy modulation in the 661 W cell line.ResultsIn this study, we first find that Acteoside inhibits autophagy, Rapamycin alleviates this inhibition and the PI3K inhibitor, 3‐MA or LY294002, synergistically promotes it. In a mechanistic study, we find that Optineurin (OPTN) mediates Acteoside regulation of autophagy. OPTN overexpression or knockdown activates or inhibits autophagy, respectively. OPTN is inhibited by autophagy inhibitors, such as Acteoside and 3‐MA and is promoted by the autophagy activator, Rapamycin. Meanwhile, PI3K and AKT are elevated by Acteoside and 3‐MA and inhibited by Rapamycin. Finally, we find that Acteoside inhibits apoptosis in parallel to autophagy and that this inhibition is also mediated by OPTN.ConclusionIn summary, we conclude that Acteoside inhibits autophagy‐induced apoptosis in RGCs through the OPTN and PI3K/AKT/mTOR pathway, and glaucoma patients may benefit from Acteoside treatment alone or in combination with other autophagy inhibitors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.