Abstract

AbstractThe development of functional compounds for extrusion applied in the additive manufacturing of anthropomorphic simulators is interesting, as it guarantees the manufacture of a 3D model similar to the patient. These simulators find applications in therapies or laboratory tests involving x‐rays. In order to replicate human conditions in these tests, it is essential to create materials that closely match the properties of human tissue, including the smoothness of soft tissues and the hardness of the bone tissue. This study developed ceramic‐polymeric composites, where the tomography intensity of each mixture was measured experimentally. Combinations of acrylonitrile butadiene styrene (ABS) with zirconium oxide and basic bismuth carbonate allowed imitation of bone tissue. The samples containing zirconium oxide and basic bismuth carbonate presented results that exceeded the minimum limit and reached a value close to 2000 Hounsfield units (HU) with 12% basic bismuth carbonate content. Combinations of ABS with hydroxyapatite and aluminum oxide can imitate soft tissues. The use of a surfactant facilitated the mixing of ceramic filler with polymer. Finally, 3D printing of a physical model was performed using a dual extruder printer, allowing simultaneous printing of bone and soft tissue components.Highlights Material mimicking x‐ray attenuation similar to bone tissue. Relation between 3D printing porosity and intensity in Hounsfield unit. Computed tomography tests on a 3D printed anthropomorphic phantom. Creating a 3D model from a Computed Tomography scan. Double extruder for 3D printing of two tissue simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.