Abstract

Acrylamide (ACR) has demonstrable neurotoxic effects in animals and humans that stem from its chemical behavior as a soft electrophilic alpha,beta-unsaturated carbonyl compound. Evidence is presented that the nerve terminal is a primary site of ACR action and that inhibition of neurotransmission mediates the development of neurological deficits. At the mechanistic level, recent proteomic, neurochemical, and kinetic data are considered, which suggest that ACR inhibits neurotransmission by disrupting presynaptic nitric oxide (NO) signaling. Nerve-terminal damage likely mediates the neurological complications that accompany the occupational exposure of humans to ACR. In addition, the proposed molecular mechanism of synaptotoxicity has substantial implications for the pathogenesis of Alzheimer's disease and other neurodegenerative conditions that involve neuronal oxidative stress and the secondary endogenous generation of acrolein and other conjugated carbonyl chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.