Abstract

Significance: Acrylamide (AA) widely exists in the environment. Studies have demonstrated that AA has neurotoxicity and potential carcinogenicity in humans, and genotoxicity and severe hepatotoxicity in animals. As the critical metabolism organ, the liver is the primary attacking target of AA. This review summarizes the recent advances in hepatotoxicity mechanism through AA-induced oxidative stress in rodent livers and hepatic cell lines, and this is beneficial to assess the risks of AA exposure and explore effective intervention methods for AA hepatotoxicity. Recent Advances: Accumulating evidence has indicated that AA-induced oxidative stress is responsible for its hepatotoxicity. The changes in homological and biochemical indexes such as activities of hepatic antioxidant enzymes have been elucidated with the occurrence and development of oxidative stress. Also, the molecular mechanisms underlying AA-induced hepatotoxicity through oxidative stress have been mainly explained by apoptosis, inflammatory, and autophagic pathways. Critical Issues: This review is focusing on the molecular mechanism of hepatotoxicity through AA-induced oxidative stress, and this can provide a theoretical basis for the assessment of AA-induced health risk and finding potential intervention targets. Future Directions: Epigenetic modifications such as microRNAs (miRNAs) and modulation of the gut microbiome involved in the AA toxification pathway must be investigated, and they will provide novel insights to unravel the toxification mechanism and intervention strategy for AA hepatotoxicity. Antioxid. Redox Signal. 38, 1122-1137.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call